返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。  q. H) K4 N2 g0 N
# y9 c% S& {- D' R3 C2 z1 h
  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况: % I& h& t6 ~& G% V+ p1 `  k

! Z* Q/ t% {# x& k! V/ Ftvb now,tvbnow,bttvb  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。 2 J$ x/ g4 c" M% E2 j

( @# M1 }4 X1 r( ]2 |+ t6 n9 YTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:
$ I4 z& O1 j2 F0 g6 N6 j& XTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。
4 B* [( q$ I% S9 hwww3.tvboxnow.com  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。 1 Z2 @3 G5 r. `9 U; |: y
TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。3 r' m  o0 o4 o2 w6 r
  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。 www3.tvboxnow.com$ S5 J, p7 @! |
2 K% S9 L* _4 S+ F6 B
  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。+ L3 k; }1 q8 L# @% J+ d

+ g% g) P1 C3 @0 s0 c- }www3.tvboxnow.com  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。
& L4 b$ d$ I6 @8 q, S0 g* K* oTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。公仔箱論壇# L8 ~8 T: a  v3 J; B0 H
  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。 * n# b# ]' Q) S$ z1 K
www3.tvboxnow.com" _4 n, s/ O; t0 }. P- [- ?6 w
  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。
  u, H& c  @, |" h' {) q9 z/ T  r/ I公仔箱論壇
' _% n& {8 s9 r3 K5 Wtvb now,tvbnow,bttvb  这时,可以称第二次了。这次称后可能出现的是三种情况: , |4 C5 h1 `1 |) t) C8 e3 _
公仔箱論壇1 R5 d6 O, B1 ?; `! ^. ]
  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。
' i6 O% U' A% Z) `$ a' U7 I. P1 H' Gtvb now,tvbnow,bttvb
2 S* B1 `( {0 G  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。
; r" `6 n% h! bwww3.tvboxnow.com公仔箱論壇0 j3 |' u& \  ]8 f! i
  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。
1 V& y2 s0 x. x( gTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。公仔箱論壇; w. d1 q" Q; N) x7 @# w
  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。www3.tvboxnow.com  u7 G$ W; b  ?* Y+ }9 `3 p
公仔箱論壇# X' r% q' [! C7 Y: t0 y, F
  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。 8 n: X! a1 f4 ?+ v

" [, x" K' Q; J* k3 l! i公仔箱論壇  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。
( a8 @$ d! W0 j2 l0 jtvb now,tvbnow,bttvbtvb now,tvbnow,bttvb# }# V: V+ ?' I: Q; y+ ]( |5 }
  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害www3.tvboxnow.com, R$ O: x2 l% ]

7 W1 d. y( X6 O+ O7 l: I6 L; O$ Xwww3.tvboxnow.com[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表